Resistin acutely impairs insulin-stimulated glucose transport in rodent muscle in the presence, but not absence, of palmitate.
نویسندگان
چکیده
Resistin is a cytokine implicated in the development of insulin resistance. However, there has been little investigation of the effects of resistin on fatty acid (FA) metabolism and insulin response in skeletal muscle, a key tissue for glucose disposal. The purpose of the present study was to examine the role of altered FA metabolism as a cause of resistin's inhibition of insulin-stimulated glucose transport in muscle. Isolated rat soleus muscles were incubated acutely (2 h) in the presence or absence of 600 ng/ml resistin, with or without 2 mM palmitate. Resistin acutely impaired insulin-stimulated glucose transport and Akt phosphorylation, but only in the presence of palmitate, implicating a role for altered FA metabolism. This impairment of glucose transport induced by resistin plus palmitate could be pharmacologically rescued by the inclusion of aimidazole carboxamide ribonucleotide, a stimulator of AMP-activated protein kinase and FA oxidation, as well as inhibitors of ceramide synthesis (myriocin, fumonisin). However, to our surprise, resistin actually blunted the palmitate-induced increase in muscle ceramide content; as expected, ceramide content was significantly lowered by fumonisin. In summary, the acute impairment of insulin response by resistin was manifested only in the presence of high palmitate and was alleviated when FA metabolism was manipulated (increased oxidation, inhibited ceramide synthesis). Resistin's acute impairment of insulin response does not appear to require an absolute increase in ceramide content; however, reducing ceramide content alleviated the impairment in glucose transport and insulin signaling.
منابع مشابه
Understanding the Mechanism Underlie the Antidiabetic Activity of Oleuropein Using Ex-Vivo Approach
Background: Oleuropein, the main constituent of olive fruit and leaves, has been reported to protect against insulin resistance and diabetes. While many experimental investigations have examined the mechanisms by which oleuropein improves insulin resistance and diabetes, much of these investigations have been carried out in either muscle cell lines or in vivo models two scenarios with many draw...
متن کاملPalmitate acutely induces insulin resistance in isolated muscle from obese but not lean humans.
Exposure to high fatty acids (FAs) induces whole body and skeletal muscle insulin resistance. The globular form of the adipokine, adiponectin (gAd), stimulates FA oxidation and improves insulin sensitivity; however, its ability to prevent lipid-induced insulin resistance in humans has not been tested. The purpose of this study was to determine 1) whether acute (4 h) exposure to 2 mM palmitate w...
متن کاملOligomeric resistin impairs insulin and AICAR-stimulated glucose uptake in mouse skeletal muscle by inhibiting GLUT4 translocation.
The hormone resistin is elevated in obesity and impairs glucose homeostasis. Here, we examined the effect of oligomerized human resistin on insulin signaling and glucose metabolism in skeletal muscle and myotubes. This was investigated by incubating mouse extensor digitorum longus (EDL) and soleus muscles and L6 myotubes with physiological concentrations of resistin and assessing insulin-stimul...
متن کاملارتباط سطح سرمی رزیستین با شاخص های مقاومت به انسولین در افراد چاق دیابتی و غیر دیابتی
Background: Resistin, an adipocyte secreted factor, has been suggested to link obesity with type 2 diabetes and insulin resistance in rodent models but its relevance to human diabetes remains uncertain. The aim of this study was to investigate the relationship between serum resistin concentrations with insulin resistance and obesity indices in type 2 diabetes and non-diabetic obese subjects.Met...
متن کاملThujone, a component of medicinal herbs, rescues palmitate-induced insulin resistance in skeletal muscle.
Thujone is thought to be the main constituent of medicinal herbs that have antidiabetic properties. Therefore, we examined whether thujone ameliorated palmitate-induced insulin resistance in skeletal muscle. Soleus muscles were incubated for < or =12 h without or with palmitate (2 mM). Thujone (0.01 mg/ml), in the presence of palmitate, was provided in the last 6 h of incubation. Palmitate oxid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 296 4 شماره
صفحات -
تاریخ انتشار 2009